Last updated: 2025-05-09

Checks: 7 0

Knit directory: BOSS_website/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250415) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8aba532. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/sim1/
    Ignored:    output/.DS_Store
    Ignored:    output/sim2/.DS_Store

Untracked files:
    Untracked:  code/mortality_BG_grid.R
    Untracked:  code/mortality_NL_grid.R
    Untracked:  data/co2/
    Untracked:  data/mortality/
    Untracked:  data/simA1/
    Untracked:  output/co2/
    Untracked:  output/mortality/BOSS_result.rds
    Untracked:  output/mortality/BO_result_BG.rda
    Untracked:  output/mortality/BO_result_NL.rda
    Untracked:  output/mortality/mod_BG.rda
    Untracked:  output/mortality/mod_NL.rda
    Untracked:  output/sim2/quad_sparse_list.rda
    Untracked:  output/simA1/

Unstaged changes:
    Modified:   BOSS_website.Rproj
    Modified:   output/sim2/BO_data_to_smooth.rda
    Modified:   output/sim2/BO_result_list.rda
    Modified:   output/sim2/rel_runtime.rda

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/sim1.Rmd) and HTML (docs/sim1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8aba532 Ziang Zhang 2025-05-09 workflowr::wflow_publish("analysis/sim1.Rmd")
Rmd 88e29b3 Ziang Zhang 2025-04-30 update boss_kl
html c26029a Ziang Zhang 2025-04-29 Build site.
Rmd 7b33730 Ziang Zhang 2025-04-29 workflowr::wflow_publish("analysis/sim1.Rmd")
html 761276f Ziang Zhang 2025-04-28 Build site.
Rmd b265bc8 Ziang Zhang 2025-04-28 workflowr::wflow_publish("analysis/sim1.Rmd")
html 203adf7 Ziang Zhang 2025-04-16 Build site.
Rmd db03343 Ziang Zhang 2025-04-16 workflowr::wflow_publish("analysis/sim1.Rmd")
html e659bad Ziang Zhang 2025-04-16 Build site.
Rmd bdb322d Ziang Zhang 2025-04-16 workflowr::wflow_publish("analysis/sim1.Rmd")
html 4f10511 Ziang Zhang 2025-04-16 Build site.
Rmd 8418236 Ziang Zhang 2025-04-16 workflowr::wflow_publish("analysis/sim1.Rmd")
Rmd fd5cfc6 Ziang Zhang 2025-04-15 update the code
html d6fe802 Ziang Zhang 2025-04-15 Build site.
Rmd 54c40ce Ziang Zhang 2025-04-15 workflowr::wflow_publish("analysis/sim1.Rmd")
Rmd c92efe8 Ziang Zhang 2025-04-15 add result
html facb4d4 Ziang Zhang 2025-04-15 Build site.
Rmd 4d2b19c Ziang Zhang 2025-04-15 workflowr::wflow_publish("analysis/sim1.Rmd")

Data

library(BayesGP)
library(tidyverse)
library(npreg)
function_path <- "./code"
output_path <- "./output/sim1"
data_path <- "./data/sim1"
source(paste0(function_path, "/00_BOSS.R"))

We simulate \(n = 100\) data with true periodicity \(a = 1.5\): \[ \begin{aligned} y_i|\mu_i &\overset{ind}{\sim} \text{Poisson}(\mu_i), \\ \log(\mu_i) =& 1 + 0.5 \cos\bigg(\frac{2\pi x_i}{1.5}\bigg) - 1.3 \sin\bigg(\frac{2\pi x_i}{1.5}\bigg) + \\ & 1.1 \cos\bigg(\frac{4\pi x_i}{1.5}\bigg) + 0.3 \sin\bigg(\frac{4\pi x_i}{1.5}\bigg) + \epsilon_i, \\ \epsilon_i &\overset{iid}{\sim} \mathcal{N}(0,4). \end{aligned} \] The covariates \(\boldsymbol{x} = \{x_i\}_{i=1}^n\) are independently simulated from \(\text{Unif}[0,10]\).

lower = 0.5; upper = 4.5; a = 1.5; noise_var = 1e-6
### Simulate data:
set.seed(123)
n <- 100
x <- runif(n = n, min = 0, max = 10)
true_func <- function(x, true_alpha = 1.5){1 + 
    0.5 * cos((2*pi*x)/true_alpha) - 1.3 * sin((2*pi*x)/true_alpha) +
    1.1 * cos((4*pi*x)/true_alpha) + 0.3 * sin((4*pi*x)/true_alpha)}
log_mu <- true_func(x) + rnorm(n, sd = 2)
y <- rpois(n = n, lambda = exp(log_mu))
data <- data.frame(y = y, x = x, indx = 1:n, log_mu = log_mu)
plot(y ~ x, type = "p", data = arrange(data, x))

Version Author Date
facb4d4 Ziang Zhang 2025-04-15

Assume the prior is \(\alpha \sim N(3, 0.5^2)\), we then define the objective function needed for BOSS:

log_prior <- function(alpha){
  dnorm(x = alpha, mean = 3, log = T, sd = 0.5)
}
eval_once <- function(alpha){
  a_fit <- (2*pi)/alpha
  x <- data$x
  data$cosx <- cos(a_fit * x)
  data$sinx <- sin(a_fit * x)
  data$cos2x <- cos(2*a_fit * x)
  data$sin2x <- sin(2*a_fit * x)
  mod <- model_fit(formula = y ~ cosx + sinx + cos2x + sin2x + f(x = indx, model = "IID", 
                                                                 sd.prior = list(param = 1)),
                   data = data, method = "aghq", family = "Poisson", aghq_k = 4
  )
  (mod$mod$normalized_posterior$lognormconst) + log_prior(alpha)
}
surrogate <- function(xvalue, data_to_smooth, choice_cov) {
  predict_gp(
    data = data_to_smooth,
    x_pred = matrix(xvalue, ncol = 1),
    choice_cov = choice_cov,
    noise_var = noise_var
  )$mean
}

Exact Grid Implementation

First, as an oracle approach, we set up a dense grid on \([0.5,4.5]\):

x_vals <- seq(lower, upper, by = 0.005)

Compute the objective function on the grid:

begin_time <- Sys.time()
total <- length(x_vals)
pb <- txtProgressBar(min = 0, max = total, style = 3)
exact_vals <- c()
for (i in 1:total) {
  xi <- x_vals[i]
  exact_vals <- c(exact_vals, eval_once(xi))
  setTxtProgressBar(pb, i)
}
close(pb)
exact_grid_result <- data.frame(x = x_vals, exact_vals = exact_vals)
exact_grid_result$exact_vals <- exact_grid_result$exact_vals - max(exact_grid_result$exact_vals)
exact_grid_result$fx <- exp(exact_grid_result$exact_vals)
end_time <- Sys.time()
end_time - begin_time

# Calculate the differences between adjacent x values
dx <- diff(exact_grid_result$x)
# Compute the trapezoidal areas and sum them up
integral_approx <- sum(0.5 * (exact_grid_result$fx[-1] + exact_grid_result$fx[-length(exact_grid_result$fx)]) * dx)
exact_grid_result$pos <- exact_grid_result$fx / integral_approx
plot(exact_grid_result$x, exact_grid_result$pos, type = "l", col = "red", xlab = "x (0-10)", ylab = "density", main = "Posterior")
abline(v = a, col = "purple")
grid()
save(exact_grid_result, file = paste0(output_path, "/exact_grid_result.rda"))

We can take a quick look at the posterior density obtained from the exact grid. Because of the strong prior centered at \(\alpha = 3\), the posterior density is not exactly unimodal at the true value \(1.5\).

load(paste0(output_path, "/exact_grid_result.rda"))
plot(x = exact_grid_result$x, y = exact_grid_result$pos, col = "black", cex = 0.5, type = "l",
     xlab = "x", ylab = "density", main = "Posterior Density", lwd = 2)
abline(v = exact_grid_result$x[which.max(exact_grid_result$exact_vals)], col = "green", lty = "dashed")
abline(v = exact_grid_result$x[which.max(exact_grid_result$exact_vals)], col = "blue", lty = "dashed")
abline(v = a, col = "purple", lty = "dashed")
grid()

Version Author Date
facb4d4 Ziang Zhang 2025-04-15

BOSS Implementation

Now, let’s assess the performance of the BOSS algorithm with different choices of \(B\), ranging from \(10\) to \(80\).

eval_num <- seq(10, 80, by = 5)
# Initialize BOSS with 3 equally spaced design points
initial_design <- 5

Running the BOSS algorithm at each \(B\):

set.seed(123)
n_grid <- nrow(exact_grid_result); optim.n = 20
objective_func <- eval_once
result_ad <- BOSS(
  func = objective_func,
  update_step = 5, max_iter = (max(eval_num) - initial_design),
  optim.n = optim.n,
  delta = 0.01, noise_var = noise_var,
  lower = lower, upper = upper,
  # Checking KL convergence
  criterion = "KL", KL.grid = 3000, KL_check_warmup = 5, KL_iter_check = 5, KL_eps = 0,
  initial_design = initial_design
)
BO_result_list <- list()
BO_result_original_list <- list()
for (i in 1:length(eval_num)) {
  eval_number <- eval_num[i]
  result_ad_selected <- list(x = result_ad$result$x[1:eval_number, , drop = F],
                             x_original = result_ad$result$x_original[1:eval_number, , drop = F],
                             y = result_ad$result$y[1:eval_number])
  
  # Optimize the hyperparameter
  opt_hyper <- opt_hyperparameters(result_ad_selected, optim.n = optim.n)
  result_ad_selected$length_scale <- opt_hyper$length_scale
  result_ad_selected$signal_var <- opt_hyper$signal_var

  # Compute final surrogate
  data_to_smooth <- result_ad_selected
  data_to_smooth$y <- data_to_smooth$y - mean(data_to_smooth$y)
  BO_result_original_list[[i]] <- data_to_smooth

  ff <- list()
  ff$fn <- function(x) as.numeric(surrogate(x, data_to_smooth = data_to_smooth, choice_cov = square_exp_cov_generator_nd(length_scale = result_ad_selected$length_scale, signal_var = result_ad_selected$signal_var)))
  x_vals <- (seq(from = lower, to = upper, length.out = n_grid) - lower)/(upper - lower)
  fn_vals <- sapply(x_vals, ff$fn)
  obj <- function(x) {exp(ff$fn(x))}
  lognormal_const <- log(integrate(obj, lower = 0, upper = 1, subdivisions = 1000)$value)
  post_x <- data.frame(y = x_vals, pos = exp(fn_vals - lognormal_const))
  BO_result_list[[i]] <- data.frame(x = (lower + x_vals*(upper - lower)), pos = post_x$pos /(upper - lower))
}
save(BO_result_list, file = paste0(output_path, "/BO_result_list.rda"))
save(BO_result_original_list, file = paste0(output_path, "/BO_result_original_list.rda"))
save(result_ad, file = paste0(output_path, "/result_ad.rda"))

Take a look at the convergence diagnostic of the BOSS algorithm:

load(paste0(output_path, "/result_ad.rda"))
plot(result_ad$KL_result$KL ~ result_ad$KL_result$i, type = "o", xlab = "iteration", ylab = "KL Stats")

Version Author Date
c26029a Ziang Zhang 2025-04-29
761276f Ziang Zhang 2025-04-28
e659bad Ziang Zhang 2025-04-16
4f10511 Ziang Zhang 2025-04-16
d6fe802 Ziang Zhang 2025-04-15
facb4d4 Ziang Zhang 2025-04-15

The KL statistics appears to be stable after \(60\) iterations of BO, indicating that the BOSS algorithm likely converges.

Let’s compare the results from the BOSS algorithm with the exact grid result:

load(paste0(output_path, "/BO_result_list.rda"))
load(paste0(output_path, "/BO_result_original_list.rda"))
plot_list <- list()
for (i in 1:length(eval_num)) {
    plot_list[[i]] <- ggplot() +
    geom_line(data = BO_result_list[[i]], aes(x = x, y = pos), color = "red", size = 1) +
    geom_line(data = exact_grid_result, aes(x = x, y = pos), color = "black", size = 1, linetype = "dashed") + 
    ggtitle(paste0("Comparison Posterior Density: B = ", eval_num[i])) +
    xlab("Value") +
    ylab("Density") +
    theme_minimal() +
    theme(text = element_text(size = 10), axis.text = element_text(size = 15)) + # only change the lab and axis text size
    coord_cartesian(ylim = c(0, max(exact_grid_result$pos)))
}

B = 10

plot_list[[1]]

Version Author Date
761276f Ziang Zhang 2025-04-28
e659bad Ziang Zhang 2025-04-16
4f10511 Ziang Zhang 2025-04-16
d6fe802 Ziang Zhang 2025-04-15
facb4d4 Ziang Zhang 2025-04-15

B = 30

plot_list[[5]]

Version Author Date
761276f Ziang Zhang 2025-04-28
e659bad Ziang Zhang 2025-04-16

B = 50

plot_list[[9]]

Version Author Date
761276f Ziang Zhang 2025-04-28

B = 80

plot_list[[15]]

Version Author Date
761276f Ziang Zhang 2025-04-28
e659bad Ziang Zhang 2025-04-16

Comparison of KL and KS statistics

To assess the accuracy of BOSS, we will compute the KL and KS statistics comparing to the posterior from oracle approach:

#### Compute the KL distance:
KL_vec <- c()
for (i in 1:length(eval_num)) {
  KL_vec[i] <- Compute_KL(x = exact_grid_result$x, px = exact_grid_result$pos, qx = BO_result_list[[i]]$pos)
}
plot((KL_vec) ~ eval_num, type = "o", ylab = "KL", xlab = "eval number: B", cex.lab = 1, cex.axis = 1)

Version Author Date
761276f Ziang Zhang 2025-04-28
#### Compute the KS distance:
KS_vec <- c()
for (i in 1:length(eval_num)) {
  KS_vec[i] <- Compute_KS(x = exact_grid_result$x, px = exact_grid_result$pos, qx = BO_result_list[[i]]$pos)
}
plot((KS_vec) ~ eval_num, type = "o", ylab = "KS", xlab = "eval number: B", cex.lab = 1, cex.axis = 1)

Version Author Date
761276f Ziang Zhang 2025-04-28

This is the KL and KS distance between BOSS and the exact grid result for this particular replication. To more robustly assess the performance, let’s consider the KL and KS distance over \(10\) independent replications.

simulate_once <- function(seed){
  set.seed(seed)
  n <- 100; x <- runif(n = n, min = 0, max = 10)
  true_func <- function(x, true_alpha = 1.5) {
    1 +
      0.5 * cos((2 * pi * x) / true_alpha) - 1.3 * sin((2 * pi * x) / true_alpha) +
      1.1 * cos((4 * pi * x) / true_alpha) + 0.3 * sin((4 * pi * x) / true_alpha)
  }
  log_mu <- true_func(x) + rnorm(n, sd = 2)
  y <- rpois(n = n, lambda = exp(log_mu))
  data <- data.frame(
    y = y,
    x = x,
    indx = 1:n,
    log_mu = log_mu
  )
  
  # Define the objective function
  eval_once <- function(alpha){
  a_fit <- (2*pi)/alpha
  x <- data$x
  data$cosx <- cos(a_fit * x)
  data$sinx <- sin(a_fit * x)
  data$cos2x <- cos(2*a_fit * x)
  data$sin2x <- sin(2*a_fit * x)
  mod <- model_fit(formula = y ~ cosx + sinx + cos2x + sin2x + f(x = indx, model = "IID", 
                                                                 sd.prior = list(param = 1)),
                   data = data, method = "aghq", family = "Poisson", aghq_k = 4
  )
  (mod$mod$normalized_posterior$lognormconst) + log_prior(alpha)
}

  
  #################################
  #################################
  #########  Fitting Grid: ########
  #################################
  #################################
  #################################
  exact_vals <- c()
  total <- length(x_vals)
  pb <- txtProgressBar(min = 0, max = total, style = 3)
  for (i in 1:total) {
    xi <- x_vals[i]
    exact_vals <- c(exact_vals, eval_once(xi))
    setTxtProgressBar(pb, i)
  }
  close(pb)
  exact_grid_result <- data.frame(x = x_vals, exact_vals = exact_vals)
  exact_grid_result$exact_vals <- exact_grid_result$exact_vals - max(exact_grid_result$exact_vals)
  exact_grid_result$fx <- exp(exact_grid_result$exact_vals)
  
  # Calculate the differences between adjacent x values
  dx <- diff(exact_grid_result$x)
  # Compute the trapezoidal areas and sum them up
  integral_approx <- sum(0.5 * (exact_grid_result$fx[-1] + exact_grid_result$fx[-length(exact_grid_result$fx)]) * dx)
  exact_grid_result$pos <- exact_grid_result$fx / integral_approx
  
  #################################
  #################################
  #########  Fitting BOSS: ########
  #################################
  #################################
  #################################
n_grid <- nrow(exact_grid_result); optim.n = 20
objective_func <- eval_once
result_ad <- BOSS(
  func = objective_func,
  update_step = 5, max_iter = (max(eval_num) - initial_design),
  optim.n = optim.n,
  delta = 0.01, noise_var = noise_var,
  lower = lower, upper = upper,
  # Checking KL convergence
  criterion = "KL", KL.grid = 3000, KL_check_warmup = 5, KL_iter_check = 5, KL_eps = 0,
  initial_design = initial_design
)
BO_result_list <- list()
BO_result_original_list <- list()
for (i in 1:length(eval_num)) {
  eval_number <- eval_num[i]
  result_ad_selected <- list(x = result_ad$result$x[1:eval_number, , drop = F],
                             x_original = result_ad$result$x_original[1:eval_number, , drop = F],
                             y = result_ad$result$y[1:eval_number])
  
  # Optimize the hyperparameter
  opt_hyper <- opt_hyperparameters(result_ad_selected, optim.n = optim.n)
  result_ad_selected$length_scale <- opt_hyper$length_scale
  result_ad_selected$signal_var <- opt_hyper$signal_var

  # Compute final surrogate
  data_to_smooth <- result_ad_selected
  data_to_smooth$y <- data_to_smooth$y - mean(data_to_smooth$y)
  BO_result_original_list[[i]] <- data_to_smooth

  ff <- list()
  ff$fn <- function(x) as.numeric(surrogate(x, data_to_smooth = data_to_smooth, choice_cov = square_exp_cov_generator_nd(length_scale = result_ad_selected$length_scale, signal_var = result_ad_selected$signal_var)))
  x_vals <- (seq(from = lower, to = upper, length.out = n_grid) - lower)/(upper - lower)
  fn_vals <- sapply(x_vals, ff$fn)
  obj <- function(x) {exp(ff$fn(x))}
  lognormal_const <- log(integrate(obj, lower = 0, upper = 1, subdivisions = 1000)$value)
  post_x <- data.frame(y = x_vals, pos = exp(fn_vals - lognormal_const))
  BO_result_list[[i]] <- data.frame(x = (lower + x_vals*(upper - lower)), pos = post_x$pos /(upper - lower))
}
  
  #################################
  #################################
  ######### Compute KS/KL: ########
  #################################
  #################################
  #################################
  #### Compute the KL distance:
  KL_vec <- c()
  for (i in 1:length(eval_num)) {
    KL_vec[i] <- Compute_KL(x = exact_grid_result$x,
                            px = exact_grid_result$pos,
                            qx = BO_result_list[[i]]$pos)
  }
  
  #### Compute the KS distance:
  KS_vec <- c()
  for (i in 1:length(eval_num)) {
    KS_vec[i] <- Compute_KS(x = exact_grid_result$x,
                            px = exact_grid_result$pos,
                            qx = BO_result_list[[i]]$pos)
  }
  
  return(data.frame(eval_num = eval_num, KL = KL_vec, KS = KS_vec))
}
all_result <- data.frame(eval_num = eval_num,
                         KL = KL_vec,
                         KS = KS_vec)
seed_vec <- 1:10
for (i in 1:length(seed_vec)) {
  seed <- seed_vec[i]
  result <- simulate_once(seed = seed)
  all_result <- rbind(all_result, result)
}
save(all_result, file = paste0(output_path, "/all_result.rda"))

Plot the results across \(10\) independent replications:

load(paste0(output_path, "/all_result.rda"))

median_result <- all_result %>% group_by(eval_num) %>%
  summarise(KL = median(KL), KS = median(KS))

lower_result <- all_result %>% group_by(eval_num) %>%
  summarise(KL = quantile(KL, 0.1), KS = quantile(KS, 0.1))

upper_result <- all_result %>% group_by(eval_num) %>%
  summarise(KL = quantile(KL, 0.9), KS = quantile(KS, 0.9))

plot(median_result$eval_num, median_result$KL, type = "o", 
     ylab = "KL", xlab = "Evaluation Budget: B",
     cex.lab = 1.4, cex.axis = 1.2)
polygon(c(median_result$eval_num, rev(median_result$eval_num)), 
        c(lower_result$KL, rev(upper_result$KL)), 
        col = rgb(0.2, 0.2, 0.2, 0.2), border = NA)

Version Author Date
761276f Ziang Zhang 2025-04-28
plot(median_result$eval_num, median_result$KS, type = "o",
     ylab = "KS", xlab = "Evaluation Budget: B", 
     cex.lab = 1.4, cex.axis = 1.2)
polygon(c(median_result$eval_num, rev(median_result$eval_num)), 
        c(lower_result$KS, rev(upper_result$KS)), 
        col = rgb(0.2, 0.2, 0.2, 0.2), border = NA)

Version Author Date
761276f Ziang Zhang 2025-04-28

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.7.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] npreg_1.1.0     lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1  
 [5] dplyr_1.1.4     purrr_1.0.2     readr_2.1.5     tidyr_1.3.1    
 [9] tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0 BayesGP_0.1.3  
[13] workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] sass_0.4.9        utf8_1.2.4        generics_0.1.3    stringi_1.8.4    
 [5] lattice_0.22-6    hms_1.1.3         digest_0.6.37     magrittr_2.0.3   
 [9] timechange_0.3.0  evaluate_1.0.1    grid_4.3.1        fastmap_1.2.0    
[13] rprojroot_2.0.4   jsonlite_1.8.9    Matrix_1.6-4      processx_3.8.4   
[17] whisker_0.4.1     ps_1.8.0          promises_1.3.0    httr_1.4.7       
[21] fansi_1.0.6       scales_1.3.0      jquerylib_0.1.4   cli_3.6.3        
[25] rlang_1.1.4       munsell_0.5.1     withr_3.0.2       cachem_1.1.0     
[29] yaml_2.3.10       tools_4.3.1       tzdb_0.4.0        colorspace_2.1-1 
[33] httpuv_1.6.15     vctrs_0.6.5       R6_2.5.1          lifecycle_1.0.4  
[37] git2r_0.33.0      fs_1.6.4          pkgconfig_2.0.3   callr_3.7.6      
[41] pillar_1.9.0      bslib_0.8.0       later_1.3.2       gtable_0.3.6     
[45] glue_1.8.0        Rcpp_1.0.13-1     highr_0.11        xfun_0.48        
[49] tidyselect_1.2.1  rstudioapi_0.16.0 knitr_1.48        farver_2.1.2     
[53] htmltools_0.5.8.1 labeling_0.4.3    rmarkdown_2.28    compiler_4.3.1   
[57] getPass_0.2-4